

Smart Contract
Source Code Audit

Prepared for IOVLabs • October 2018

v2006

1. Table Of Contents
1. Table Of Contents

2. Executive Summary

3. Introduction
3.1. Audit Timeline

4. Summary Of Findings

5. Findings
RIF-001 - Contributors can transfer tokens before redeemed
RIF-002 - Anyone can steal tokens of shareholders
RIF-003 - Potential unexpected lockout states
RIF-004 - Redeem multiple contributors to same address increases paid bonus
RIF-005 - Missing visibility modifiers in TransferAndCall
RIF-006 - redeemToSameAddress does not return the expected value
RIF-007 - fromAsciiString does not fail for invalid addresses

6. Testing

7. Appendix

8. Disclaimer

© 2018 Coinspect

2. Executive Summary

Between September and October 2018, ​IOVLabs engaged ​Coinspect to perform source
code reviews of the ​RIF Token smart contracts. ​The objective of the audits was to evaluate
the security of the smart contracts. During the assessments, Coinspect identified seven
security issues. The high risk issues identified compromised the integrity of the token.
External attackers could have abused RIF-002 to steal tokens belonging to shareholders,
and initial contributors could have exploited RIF-004 to obtain bonus amounts higher than
expected. Coinspect verified that ​all the identified security issues were correctly fixed in
the revision ​̀rc3​` (git: ​6194d7edca0abbcb5275350da7b225edd18b7573​) of RIF Token
contracts.

3. Introduction
The RIFToken is an ERC20/677 compatible token designed to run on the RSK smart
contract platform.

Before the token starts working as such there is an initialization phase where the token is set
up, IOVLabs and shareholders are awarded a number of tokens which are stored in
individual lockup contracts which control how these are distributed in stages as the different
milestones are reached. Additionally, contributors may be added which receive the tokens
upon distribution, but are encouraged to keep them by a bonus payout divided in different
time lapses. All of these tasks are performed by a contract called TokenManager, which is
specifically authorized to perform such actions in the RIFToken contract.

Contributors must choose where should their tokens and bonuses be distributed at the time
of redeeming them. They can simply specify that their tokens should be left on their original
address, or they can choose to have the tokens redirected to a different address by sending
a specially crafted message signed with their private key which specifies the new address. A
third redeem method is available which can only be called by the RIFToken contract owner,
which uses a message with the text "​DELEGATION​" signed by the original contributor public
key. This message must be generated by the contributor in advance and kept safely stored
in case they lose access to their original account.

After the distribution is over, the contract works as a regular ERC20 token, which also
implements the ​ERC677 ​transferAndCall as a backward compatible enhancement of
ERC20.

3.1. Audit Timeline
In September 2018, IOVLabs engaged ​Coinspect to perform the first source code review of
the ​RIF Token smart contracts. ​Coinspect identified four issues, two high risk issues, one
medium risk and one low risk. The high risk issues identified compromised the integrity of the
token. External attackers could have abused RIF-002 to steal tokens belonging to

© 2018 Coinspect 1

https://www.iovlabs.org/
https://coinspect.com/
https://github.com/ethereum/EIPs/issues/677
https://coinspect.com/

shareholders, and initial contributors could have exploited RIF-004 to obtain bonus amounts
higher than expected.

In October 2018, after the identified issues were addressed by the IOVLabs team, a new
security audit of the contracts was performed. The fixes for the previous issues were verified
and two new low risk issues and one medium issue were identified.

The initial audit included the ​rc-1 tag of a private Git repository up to commit
e7d81ef93256a613faef540df9bffb5aac396b74​, comprising the following Solidity files with their
respective SHA-256 hash:
612911d9f5dd5976e58ea2bd8b93398aaa9d8f66a30e32520f7f67552cc016f0 Migrations.sol

76bb9fea09e190e04cb7e8546d5ed39871405fc817e14558c0b971ab27aec352 ERC223/BasicERC223.sol

91ee52d0be81ab83d0b7852fb474a4284beb0aaecbea0c779a98b56f633d8119 ownership/TemporaryOwnable.sol

5928aa91e8f6e5813e94085e9cef0e64a9b3e9a5eb62bc2e1ff28b0d10d597a4 RIF/AddressLinker.sol

5d369ca650b14808f905182e7b7fbbc4ef7f71c614d0627c34383d1e9cad17fb RIF/Contributions.sol

806a1bb49de24c84a8877c7696c8261f8eb704ab3c9eb3cc5278244c2220f040 RIF/LockupAccount.sol

50b6ddde3afc751ba52676d0986eb963a4f599bbe0d62012b55eb87b9043f752 RIF/PreSale.sol

aa11de0b2157b00f1a8c08b07aecc41f859510279e4202052aef334217a5b761 RIF/RIFToken.sol

106382525232058357b7782d7e6823f4c1358724961e53984d27382e1367da21 RIF/Shareholders.sol

7731bb8529770d7e82fbb0d07b140f47dd55de697db04b17e5a22f1262ea9ef9 RIF/TokenManager.sol

b78e3540f99e491c098aba6c66dc52d579707243d83a48bfd4e30055a14c92bc util/AddressHelper.sol

02e93d6b435b391e518316034bffdd3643d05822fa51a51071fa77488c09d70d util/ECRecovery.sol

third-party/

cb03353de178d1918772e1ba8190f435f35ab37e45c1a7e61a7cf2abae1d000f ERC223/ContractReceiver.sol

53c4b57591897575938d7ace7c62b8376cb284d38efd1b76137c55594596d507 ERC223/ERC223.sol

third-party/openzeppelin/

ded51820c1b27c42946247c0c8e5947012f0c0283020a49beb044b2b3e99d94f check-scripts.sh

9f0f23c056677dcd933c2d0f0a4b69f68f04bca3b73dd0984cd72a4e1e8cc462 lifecycle/Destructible.sol

a95bf355855dc532a61db3016d196da9f82fbc20b19d2341ae6c571b38b967e2 lifecycle/Pausable.sol

5799af0837f330c6cb09e28f2d3034149ca6ca9616eb77d395eed9285405a414 lifecycle/TokenDestructible.sol

fce117495e123ae259daa4357467aa39ab2fde8d8c405ea6e3a3d9c1d1888855 math/Math.sol

2992be99ec79983fab97b08158bbad475f55e02ec8c5293d663fa124a9b75c66 math/SafeMath.sol

663c278d96c39b144b0c334a4d0df1d873b2063fcc72c769e4b163595cf12900 ownership/Claimable.sol

4b27fe9f08c170b4e1e193ecc2223a89802828caf1273fccaa0f04239af8ff97 ownership/Contactable.sol

e134f31c45d9ce69e082399be7659a526bb023cc74180b522aba3ef7b63bda0e ownership/DelayedClaimable.sol

20d9c902314825c533b9737c46a85b6d363ae499685da068b282e0a059665ecb ownership/HasNoContracts.sol

a84fb3cd22778e8c0c7703182b137f752e08123eb41d2a7786e2b86095e84aa2 ownership/HasNoEther.sol

35feff96ea2ff782dfa0d35815b2d394cff31bbb2270b77aab4abac1bf6e4b9b ownership/Ownable.sol

da19ee1ff8357b2ad58052d25858348528f29677817788ed918eddaa67b49922 token/ERC20/BasicToken.sol

91e5ad2bfd2aac60ffcc40a274751cdf0de31d91b69423e97f07e2fc6ab3e43c token/ERC20/DetailedERC20.sol

8f09e53364787fdff9a9f701c4c5c35b8786d26aed5cce84ca460cd854e8a130 token/ERC20/ERC20Basic.sol

1570b37daa43d61c3f045639f96f63ca687ac0a8444ff944cd1ed1c33c0141e9 token/ERC20/ERC20.sol

acd133a147acb788b7cf8bd0fa87bbc734c2fbb58ba202a9b3134d6931f2cf66 token/ERC20/MintableToken.sol

e9ccb3aa3c3b5c5ad4c9aa9ce3091584360214ae13332650d1ab27d6995d4c6a token/ERC20/PausableToken.sol

31223bf5aa427aae272951b3f95d3a4b1c78cac0270284b19f3e5dd8112ad400 token/ERC20/SafeERC20.sol

17f3420015158148d711851a1f8a266ca417d25645f8ad37569ed9ba34ad351b token/ERC20/StandardToken.sol

a9a33ad845aa436b53f425d22701c6f9296d9ffbbaea8c31c8315fc39e0db892 token/ERC20/TokenVesting.sol

The second audit included the ​rc-2 tag of a private Git repository up to commit
b045729bb556fd02399ca5ca3ddc247b5e35d908​, comprising the following Solidity files with their
respective SHA-256 hash:
612911d9f5dd5976e58ea2bd8b93398aaa9d8f66a30e32520f7f67552cc016f0 Migrations.sol

a7b00e2c4118c6ddb0a6e98d82c9a67033fb0df1469a8897c8a4c369c97e1b2e ERC677/ERC677TransferReceiver.sol

bb676e6d9c6f6efa2d9a6e72aa113537ddd0082482602504dddd22b8a5a77ce5 RIF/AddressLinker.sol

5d369ca650b14808f905182e7b7fbbc4ef7f71c614d0627c34383d1e9cad17fb RIF/Contributions.sol

8ac86c3d229bd5f7a7e68e8fc73415837e5e99bf4d6c30fc44f9b3374dbaf2de RIF/LockupAccount.sol

50b6ddde3afc751ba52676d0986eb963a4f599bbe0d62012b55eb87b9043f752 RIF/PreSale.sol

6d4a4f568ace981444a08f8ea8400e65e242db9052dd0a2d4e901ef521e0293a RIF/RIFToken.sol

© 2018 Coinspect 2

106382525232058357b7782d7e6823f4c1358724961e53984d27382e1367da21 RIF/Shareholders.sol

0ac192208a6ee6f336a1247d3b1df7dad539b94dff7e7057815dcdabbbb55189 RIF/TokenManager.sol

048edc94dad6d7692fa59f1149d92b06f7f4db6bd92ef3a9979eb9540e3509f8 util/AddressHelper.sol

02e93d6b435b391e518316034bffdd3643d05822fa51a51071fa77488c09d70d util/ECRecovery.sol

third-party/openzeppelin/

ded51820c1b27c42946247c0c8e5947012f0c0283020a49beb044b2b3e99d94f check-scripts.sh

9f0f23c056677dcd933c2d0f0a4b69f68f04bca3b73dd0984cd72a4e1e8cc462 lifecycle/Destructible.sol

5799af0837f330c6cb09e28f2d3034149ca6ca9616eb77d395eed9285405a414 lifecycle/TokenDestructible.sol

fce117495e123ae259daa4357467aa39ab2fde8d8c405ea6e3a3d9c1d1888855 math/Math.sol

2992be99ec79983fab97b08158bbad475f55e02ec8c5293d663fa124a9b75c66 math/SafeMath.sol

663c278d96c39b144b0c334a4d0df1d873b2063fcc72c769e4b163595cf12900 ownership/Claimable.sol

4b27fe9f08c170b4e1e193ecc2223a89802828caf1273fccaa0f04239af8ff97 ownership/Contactable.sol

e134f31c45d9ce69e082399be7659a526bb023cc74180b522aba3ef7b63bda0e ownership/DelayedClaimable.sol

20d9c902314825c533b9737c46a85b6d363ae499685da068b282e0a059665ecb ownership/HasNoContracts.sol

a84fb3cd22778e8c0c7703182b137f752e08123eb41d2a7786e2b86095e84aa2 ownership/HasNoEther.sol

35feff96ea2ff782dfa0d35815b2d394cff31bbb2270b77aab4abac1bf6e4b9b ownership/Ownable.sol

da19ee1ff8357b2ad58052d25858348528f29677817788ed918eddaa67b49922 token/ERC20/BasicToken.sol

91e5ad2bfd2aac60ffcc40a274751cdf0de31d91b69423e97f07e2fc6ab3e43c token/ERC20/DetailedERC20.sol

1570b37daa43d61c3f045639f96f63ca687ac0a8444ff944cd1ed1c33c0141e9 token/ERC20/ERC20.sol

8f09e53364787fdff9a9f701c4c5c35b8786d26aed5cce84ca460cd854e8a130 token/ERC20/ERC20Basic.sol

acd133a147acb788b7cf8bd0fa87bbc734c2fbb58ba202a9b3134d6931f2cf66 token/ERC20/MintableToken.sol

31223bf5aa427aae272951b3f95d3a4b1c78cac0270284b19f3e5dd8112ad400 token/ERC20/SafeERC20.sol

17f3420015158148d711851a1f8a266ca417d25645f8ad37569ed9ba34ad351b token/ERC20/StandardToken.sol

a9a33ad845aa436b53f425d22701c6f9296d9ffbbaea8c31c8315fc39e0db892 token/ERC20/TokenVesting.sol

Coinspect verified that ​all the identified issues were fixed in the rc-3​ tag of a private Git
repository up to commit ​6194d7edca0abbcb5275350da7b225edd18b7573​, comprising the following
Solidity files with their respective SHA-256 hash:
612911d9f5dd5976e58ea2bd8b93398aaa9d8f66a30e32520f7f67552cc016f0 ./Migrations.sol
a7b00e2c4118c6ddb0a6e98d82c9a67033fb0df1469a8897c8a4c369c97e1b2e ./ERC677/ERC677TransferReceiver.sol

6397f30f7d5800ab0195e0859ff249bcdfdc3917aa46757a28665cad587a74af ./util/AddressHelper.sol

02e93d6b435b391e518316034bffdd3643d05822fa51a51071fa77488c09d70d ./util/ECRecovery.sol

5d369ca650b14808f905182e7b7fbbc4ef7f71c614d0627c34383d1e9cad17fb ./RIF/Contributions.sol

d371155257a94f3e943e9156b34163f3ef95a3f9d3e38139ebb2c1e0db34ccd4 ./RIF/AddressLinker.sol

8ac86c3d229bd5f7a7e68e8fc73415837e5e99bf4d6c30fc44f9b3374dbaf2de ./RIF/LockupAccount.sol

67ac5d9bbaff0eb910b2a0f3c6e8048cac682d6fe5910169b95255c347ea53f0 ./RIF/RIFToken.sol

a2c33f257ee4dc099f9f40484e2805c4679efda5aeceac9a47d5ac46b1e805ea ./RIF/TokenManager.sol

106382525232058357b7782d7e6823f4c1358724961e53984d27382e1367da21 ./RIF/Shareholders.sol

50b6ddde3afc751ba52676d0986eb963a4f599bbe0d62012b55eb87b9043f752 ./RIF/PreSale.sol

./third-party/openzeppelin/

663c278d96c39b144b0c334a4d0df1d873b2063fcc72c769e4b163595cf12900 ownership/Claimable.sol

4b27fe9f08c170b4e1e193ecc2223a89802828caf1273fccaa0f04239af8ff97 ownership/Contactable.sol

e134f31c45d9ce69e082399be7659a526bb023cc74180b522aba3ef7b63bda0e ownership/DelayedClaimable.sol

a84fb3cd22778e8c0c7703182b137f752e08123eb41d2a7786e2b86095e84aa2 ownership/HasNoEther.sol

35feff96ea2ff782dfa0d35815b2d394cff31bbb2270b77aab4abac1bf6e4b9b ownership/Ownable.sol

20d9c902314825c533b9737c46a85b6d363ae499685da068b282e0a059665ecb ownership/HasNoContracts.sol

1570b37daa43d61c3f045639f96f63ca687ac0a8444ff944cd1ed1c33c0141e9 token/ERC20/ERC20.sol

8f09e53364787fdff9a9f701c4c5c35b8786d26aed5cce84ca460cd854e8a130 token/ERC20/ERC20Basic.sol

acd133a147acb788b7cf8bd0fa87bbc734c2fbb58ba202a9b3134d6931f2cf66 token/ERC20/MintableToken.sol

a9a33ad845aa436b53f425d22701c6f9296d9ffbbaea8c31c8315fc39e0db892 token/ERC20/TokenVesting.sol

17f3420015158148d711851a1f8a266ca417d25645f8ad37569ed9ba34ad351b token/ERC20/StandardToken.sol

91e5ad2bfd2aac60ffcc40a274751cdf0de31d91b69423e97f07e2fc6ab3e43c token/ERC20/DetailedERC20.sol

31223bf5aa427aae272951b3f95d3a4b1c78cac0270284b19f3e5dd8112ad400 token/ERC20/SafeERC20.sol

da19ee1ff8357b2ad58052d25858348528f29677817788ed918eddaa67b49922 token/ERC20/BasicToken.sol

9f0f23c056677dcd933c2d0f0a4b69f68f04bca3b73dd0984cd72a4e1e8cc462 lifecycle/Destructible.sol

5799af0837f330c6cb09e28f2d3034149ca6ca9616eb77d395eed9285405a414 lifecycle/TokenDestructible.sol

2992be99ec79983fab97b08158bbad475f55e02ec8c5293d663fa124a9b75c66 math/SafeMath.sol

fce117495e123ae259daa4357467aa39ab2fde8d8c405ea6e3a3d9c1d1888855 math/Math.sol

© 2018 Coinspect 3

The content of the files Contributors[1-5].sol with addresses and balance of contributors was
not reviewed.

© 2018 Coinspect 4

4. Summary Of Findings

ID Description Risk Fixed
RIF-001 Contributors can transfer tokens before redeemed Medium ✔

RIF-002 Anyone can steal tokens of shareholders High ✔

RIF-003 Potential unexpected lockout states Low ✔

RIF-004 Redeem multiple contributors to same address increases
paid bonus

High ✔

RIF-005 Missing visibility modifiers in TransferAndCall Low ✔

RIF-006 redeemToSameAddress does not return the expected
value

Low ✔

RIF-007 fromAsciiString does not fail for invalid addresses Medium ✔

© 2018 Coinspect 5

5. Findings

RIF-001 Contributors can transfer tokens before redeemed

Total Risk
Medium

Fixed
✔

Impact
Medium

Likelihood
Medium

Location
RIFToken.sol

Description

Contributors are not supposed to be able to move their tokens before they redeem them. But
function ​transferFrom​ in ​RIFToken​ doesn’t enforce this:

function transferFrom(address _from, address _to, uint256 _value) public

returns (bool) {

 bool result = super.transferFrom(_from, _to, _value);

 if (!result) return false;

 doTrackMinimums(_from);

 return true;

}

And ​RIFToken​ inherits function ​approve​ from StandardToken.sol:

function approve(address _spender, uint256 _value) public returns (bool) {

 allowed[msg.sender][_spender] = _value;

 emit Approval(msg.sender, _spender, _value);

 return true;

}

A contributor could take advantage of this vulnerability to move funds before redeeming
them, by calling ​approve with a destination address and then calling ​transferFrom to
move token to the destination address.

There were already tests in place for ​approve and ​transferFrom to make sure this is not
possible, but the tests were broken.

Recommendations

Add checks in the ​approve function as well as ​increaseApproval and ​decreaseApproval
to require that contributors calling the function had already redeemed the tokens.

© 2018 Coinspect 6

It is advisable to add similar checks in the ​transferFrom function too, even though it should
be unnecessary if the functions changing allowance already do the checks.

RIFToken inherits from ​StandardToken​, and re-implements some functions in order to add
controls. Special care must be taken to be sure that controls are added to all functions that
need it, or it might be possible to bypass controls by using alternative inherited functions
(such as ​approve​ and ​increaseApproval​).

Additionally, check that the addresses specified in these functions are not ones that have
been redirected to a new address, as in this case the funds may be lost.

© 2018 Coinspect 7

RIF-002 Anyone can steal tokens of shareholders

Total Risk
High

Fixed
✔

Impact
High

Likelihood

High

Location
TokenManager.sol

Description

The contract ​TokenManager implements the function ​setShareholderAddress to assign a
shareholder wallet address to an available token distribution. This function has no access
controls, anyone could call it to steal tokens destined to shareholders.

Recommendations

Add the ​onlyOwner​ modifier to the function ​setShareholderAddress.

© 2018 Coinspect 8

RIF-003 Potential unexpected lockout states

Total Risk
Low

Fixed
✔

Impact
Medium

Likelihood

Low

Location
RIFToken.sol

Description

The contract ​RIFToken implements two access control rules where some functions may only
be called by the contract ​owner and some others may only be called by the
authorizedManagerContract​.

The contract ​owner is used to deploy and setup the token so that it works correctly, and one
of the required tasks is to assign an ​authorizedManagerContract​. The
authorizedManagerContract is assigned to another contract which is used after the
deploy to manage the different actions required by the contract such as transfer funds to
contributors and shareholders, redirect funds from one user address to another and pay
bonuses.

The contract ​owner is also capable of disabling the functions of the
authorizedManagerContract by calling the ​disableManagerContract function. However,
once this function is called once, a new manager contract can not be set. If this function is
called before the manager contract completes all the tasks it is supposed to complete, some
critical tasks such as bonus payments, unclaimed tokens recovery will never be completed.

Recommendations

Ensure the ​disableManagerContract function is not called before the
authorizedManagerContract​ completes all the tasks it is required to do.

© 2018 Coinspect 9

RIF-004 Redeem multiple contributors to same address increases paid
bonus

Total Risk
High

Fixed
✔

Impact
High

Likelihood
Medium

Location
RIFToken.sol

Description

The contract ​RIFToken implements several functions to perform the redeem of the funds of a
contributor. The function ​contingentRedeem allows the contract owner to assign an address
different from the contributors’ original address as its redeem address.

When performing this function, the value of the variable ​minimumLeftFromSale which is
used to calculate the bonus assigned to each contributor is changed. Furthermore, if a
second contributor chooses to redeem to the same address, the value of said variable will be
overwritten:

 function contingentRedeem(

 (...)

 // Now we must move the funds from the old address to the new address

minimumLeftFromSale[redeemAddress] =

minimumLeftFromSale[contributorAddress];

 minimumLeftFromSale[contributorAddress] = 0;

 (...)

Taking advantage of this, a contributor may cheat in order to get more bonus tokens. The
steps to follow to achieve that are the following:

1. Contributor A (with ​minimumLeftFromSale[A]=100​) is redeemed to address Z:
-> ​minimumLeftFromSale[Z] = minimumLeftFromSale[A] = 100

2. Contributor B (with ​minimumLeftFromSale[B]=500 ​) is redeemed to address Z:
 -> minimumLeftFromSale[Z] = minimumLeftFromSale[B] = 500

3. payBonus is called in the ​TokenManager contract. Now the bonus for Contributor A is
calculated and should be 100*bonus_percentage, but as this is calculated using
minimumLeftFromSale[Z] which is now 500. The bonus will be of
500*bonus_percentage. Then the bonus for Contributor B is calculated, and the
bonus is as expected 500*bonus_percentage.

Step 1 can be repeated N-times with different contributor addresses before performing Step
2 using the address with the highest contribution amount, in order to maximize the amount of
extra tokens awarded to all of them. An attacker could create a smart contract to exploit this
weakness and invite contributors to redeem to the attacker's contract and share the benefit.

© 2018 Coinspect 10

Recommendations

Either forbid one address to be used by two different contributions to redeem, or track the
minimumLeftFromSale variable from the original contributor address in order to prevent
problems at the time of calculating the bonus.

© 2018 Coinspect 11

RIF-005 Missing visibility modifiers in TransferAndCall

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood

Low

Location
RIFToken.sol

Description

The public method ​TransferAndCall in the RIFToken contract lacks visibility modifiers,
such as ​public​. It’s a good smart-contract programming practice to clearly distinguish
between private and public methods, to prevent mistakes.

Recommendations

Add the “​public​” modifier to the public methods.

© 2018 Coinspect 12

RIF-006 redeemToSameAddress does not return the expected value

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood

Low

Location
RIFToken.sol

Description

The method ​redeemToSameAddress in the RIFToken contract specifies that a bool result will
be returned, however there is no ​return statement in the function. As it is a public method,
a contributor may include a call to that method within his own code expecting a bool result
which will never be returned.

Recommendations

Add the “​return True​” statement to the function in case it runs correctly.

© 2018 Coinspect 13

RIF-007 fromAsciiString does not fail for invalid addresses

Total Risk
Medium

Fixed
✔

Impact
Medium

Likelihood
Medium

Location
AddressHelper.sol

Description

The function ​AddressHelper.fromAsciiString ​accepts invalid hexadecimal strings and
returns an ​address() with a 0 in the position of each invalid hexadecimal character. This
function is used to obtain the destination address for the tokens when the
RIFToken.redeem function is called by a contributor. When this redeem method is used, the
contributor signs a message containing the destination RSK address encoded in
hexadecimal and calls ​RIFToken.redeem ​passing the address as a string and the r,s and v
values of the signature.
If the contributor makes a mistake and signs an address that is not even a valid hexadecimal
string, the error is not detected by the contract and the funds are lost.

Recommendations

Revert the transaction when an invalid address string is passed to ​RIFToken.redeem.

© 2018 Coinspect 14

6. Testing

The contracts are accompanied by a good set of tests. Coinspect reviewed the tests, and
found some problems that prevented some tests of running properly. In fact, finding RIF-001
should have been spotted by a test case but the test didn’t run properly and was marked as
passed​.

The problems are some improper checks to assert that a function call throws an exception.
For example in RIFTokenTransfer_test.js:

it('cannot transferFrom to a contributor', async function () {

[...]

 try {

 await this.token.transferFrom(shareholderAccount,

contributorAccount, 200, { from: anotherAccount });

 assert.fail();

 } catch (ex) {

 }

});

This code is incorrect because ​assert.fail() works by throwing an exception that the test
runner is expecting to catch to mark the test as failed, but the try/catch sequence included in
the test code actually catches the exception and the test runner never gets it, so the test
always passes.

Another problem with using a try/catch in this fashion is that it might hide other errors in the
tests. For example in RIFToken_test.js:

it('cannot disable track minimum after release ownership', async function

() {

 await this.token.releaseOwnership();

 try {

 await this.token.disableTrackMinimum();

 assert.fail();

 } catch (ex) {

 }

});

The test above calls the function ​disableTrackMinimum​, but that function doesn’t exist in
the contract (the correct name is ​disableTrackMinimum​s​), and this throws an error that is
catched and ignored. Similarly, tests ‘only owner can disable redeem’ and ‘only owner can
disable manager contract’ fail silently (because they call functions with an extra parameter
that no longer exists in the contracts), but the problems are hidden by the try/catch.

In order to check function throws, it is appropriate to use ​expectThrow as in tests for
LookupAccount​ and ​TokenManager​, for example:

© 2018 Coinspect 15

it('cannot transferFrom to a contributor', async function () {

 await this.token.transferToShareholder(shareholderAccount, 1000, {

from: managerContract });

 await this.token.transferToContributor(contributorAccount, 1000, {

from: managerContract });

 await this.token.approve(anotherAccount, 200, { from:

shareholderAccount });

 await expectThrow(this.token.transferFrom(shareholderAccount,

contributorAccount, 200, { from: anotherAccount }));

});

It is recommended to increase test coverage. For example, in RIF-001 it was found that a
contributor can use ​approve/transferFrom before redeeming the tokens. After fixing the
try/catch problem, two existing tests find this issue. But the ​increaseApproval function is
not tested at all, and it serves the same purpose as ​approve​. Similarly, some tests about
the behaviour of transfers don’t cover the several flavors of ​transfer​ and ​transferFrom​.

The test “can recover no beneficiary shareholders” (included in ​TokenManager.tests.js​) is
not actually checking anything as no comparison or expected result is stated in order to
verify the contracts are behaving correctly. We recommend completing this test.

© 2018 Coinspect 16

7. Appendix
In order to confirm issue RIF-004, a truffle test was developed. Please note that to make this
test work it’s necessary to modify the ​contingentRedeem​ function in the ​RIFToken​ contract
to the following, just to remove the signature checking part of the function:

 function contingentRedeem(address contributorAddress,

 address redeemAddress) public onlyTemporaryOwner returns (bool) {

 if (!redeemAllowed) return false;

 // only an original contributor could be redeemed

 if (!isInitialContributor[contributorAddress]) return false;

 // avoid to redeem a already accepted or redeemed address

 if (isRedeemed[contributorAddress]) return false;

 // Now we must move the funds from the old address to the new address

 minimumLeftFromSale[redeemAddress] =

minimumLeftFromSale[contributorAddress];

 minimumLeftFromSale[contributorAddress] = 0;

 // Mark as redirected and redeemed

 redirect[contributorAddress] = redeemAddress;

 isRedeemed[contributorAddress] = true;

 // Once the contributorAddress has moved the funds to the new RSK address,

what to do with the old address?

 // Users should not receive RIFs in the old address from other users. If

they do, they may not be able to access

 // those RIFs.

 return transferAll(contributorAddress, redeemAddress);

 }

To verify the existence of the issue you may run the following test:

const { expectThrow } = require('../helpers/expectThrow');

const { latestTime } = require('../helpers/latestTime');

const { increaseTimeTo, duration } = require('../helpers/increaseTime');

const { ethGetBlock, ethGetCode } = require('../helpers/web3');

const { zeroes, addr } = require('../helpers/util');

const { getTokenDistributions } = require('../helpers/tokenManager');

const BigNumber = web3.BigNumber;

require('chai')

.use(require('chai-bignumber')(BigNumber))

.should();

const LockupAccount = artifacts.require('LockupAccount');

const RIFToken = artifacts.require('RIFTokenForTest');

© 2018 Coinspect 17

// We use a version of the token manager that allows mocking the pre-sale

// information

const TokenManager = artifacts.require('TokenManager');

const PreSale = artifacts.require('MockablePreSale');

const ZERO_ADDRESS = `0x${zeroes(40)}`;

const EXPECTED_TOTAL_SUPPLY = new BigNumber(1e+27);

const EXPECTED_VESTING_PARAMETERS = {

 shareholder: {

 initialInstallments: 0,

 cliff: 6,

 installments: 42,

 installmentDuration: (365/12)*24*60*60, // # of seconds in a 365/12 day

month

 recoveryTime: 6*(365/12)*24*60*60

 },

 riflabs: {

 initialInstallments: 1,

 cliff: 0,

 installments: 59,

 installmentDuration: (365/12)*24*60*60, // # of seconds in a 365/12 day

month

 recoveryTime: 0

 }

}

const EXPECTED_MONTH_TIME = duration.hours(730);

const EXPECTED_BONUSES = {

 STAGE_ONE: 0.2,

 STAGE_TWO: 0.05,

 STAGE_THREE: 0.05

}

const EXPECTED_BONUS_TIMES = {

 STAGE_ONE: 3*EXPECTED_MONTH_TIME,

 STAGE_TWO: 6*EXPECTED_MONTH_TIME,

 STAGE_THREE: 9*EXPECTED_MONTH_TIME

}

const EXPECTED_RECOVERY_TIME = duration.days(365);

const EXPECTED_LOCKUP_RECOVERY_TIME = duration.days(180);

const RECOVERY_ADDRESS = addr("0xff");

const KIND = {

 RIFLABS: "riflabs",

 CONTRIBUTOR: "contributor",

 SHAREHOLDER: "shareholder"

};

const MIN_GAS_NEEDED_DISTRIBUTE_LOOP = 1000000;

const MIN_GAS_NEEDED_DISTRIBUTE_CALL = 230000;

const MIN_GAS_NEEDED_BONUS_LOOP = 250000;

const MIN_GAS_NEEDED_RECOVER_FUNDS_LOOP = 250000;

const MIN_GAS_NEEDED_RECOVER_SHAREHOLDERS_LOOP = 50000;

© 2018 Coinspect 18

var assertDistributions = (tokenDistributions, kind, howMany) => {

 var filteredDistributions = tokenDistributions.filter(d => d.kind === kind);

 var filteredMocks = mockedData.filter(d => d.kind === kind);

 howMany = howMany != null ? howMany : filteredMocks.length;

 (filteredDistributions.length).should.equal(howMany);

 for (var i = 0; i < howMany; i++) {

 var mock = filteredMocks[i];

 filteredDistributions[i].beneficiary.should.equal(addr(mock.address));

 if (kind !== KIND.CONTRIBUTOR) {

 filteredDistributions[i].escrow.should.not.equal(ZERO_ADDRESS);

 } else {

 filteredDistributions[i].escrow.should.equal(ZERO_ADDRESS);

 }

 filteredDistributions[i].amount.should.bignumber.equal(mock.amount);

 }

};

var mockedData = [

 { kind: KIND.RIFLABS, address: RECOVERY_ADDRESS, amount: 250000 },

 { kind: KIND.CONTRIBUTOR, address: '0xaa', amount: 100 },

 { kind: KIND.CONTRIBUTOR, address: '0xbb', amount: 500 },

];

contract('TokenManager', function ([_, owner, payer, other, yetother]) {

 before(async function() {

 // Give the owner enough gas to run all the tests

 await web3.eth.sendTransaction({ from: other, to: owner, value:

989717679000000 });

 await web3.eth.sendTransaction({ from: yetother, to: owner, value:

989717679000000 });

 });

 context('Conspect is', function () {

 it('testing bonus cheats', async function () {

 // deploy token and presale contracts

 this.token = await RIFToken.new({ from: owner });

 this.presale = await PreSale.new({ from: owner });

 // load riflabs and shareholder mockedData in PreSale contract

 await this.presale.setRifLabs(mockedData[0].address,

mockedData[0].amount, { from: owner });

 for (var i = 1; i < mockedData.length; i++) {

 var mock = mockedData[i];

 switch(mock.kind) {

 case KIND.SHAREHOLDER:

 await this.presale.addShareholder(mock.address, mock.amount,

{ from: owner });

 break;

 case KIND.CONTRIBUTOR:

 await this.presale.addContributor(mock.address, mock.amount,

{ from: owner });

© 2018 Coinspect 19

 break;

 }

 }

 // deploy token manager and add it as the manager contract for RIFToken

 this.tokenManager = await TokenManager.new(this.token.address,

this.presale.address, { from: owner });

 await this.token.setAuthorizedManagerContract(this.tokenManager.address,

{ from: owner });

 // distribute tokens

 this.expectedDistributionBlockTime = null;

 this.numberOfTransactions = 0;

 while(!(await this.tokenManager.hasDistributed())) {

 txReceipt = await

this.tokenManager.distributeTokens(MIN_GAS_NEEDED_DISTRIBUTE_LOOP, { from: owner

});

 this.numberOfTransactions++;

 if (!this.expectedDistributionBlockTime) {

 this.expectedDistributionBlockTime = (await

ethGetBlock(txReceipt.receipt.blockNumber)).timestamp;

 }

 }

 this.tokenDistributions = await

getTokenDistributions(this.tokenManager);

 // make sure it finished distributing

 this.distributionTime = null;

 while(!(await this.tokenManager.hasDistributed())) {

 txReceipt = await

this.tokenManager.distributeTokens(MIN_GAS_NEEDED_DISTRIBUTE_LOOP, { from: owner

});

 if (!this.distributionTime) {

 this.distributionTime = (await

ethGetBlock(txReceipt.receipt.blockNumber)).timestamp;

 }

 }

 //(await this.tokenManager.hasDistributed()).should.be.true

 // make sure balances are OK

 (await this.token.balanceOf('0xaa')).should.bignumber.equal(100);

 (await this.token.balanceOf('0xbb')).should.bignumber.equal(500);

 // redeem for both contributors to the same address

 await this.token.contingentRedeem('0xaa', '0xcc', { from: owner });

 await this.token.contingentRedeem('0xbb', '0xcc', { from: owner });

 //advance time until bonus can be payed, and try to pay them

 this.distributionTime = (await

ethGetBlock(txReceipt.receipt.blockNumber)).timestamp;

 await increaseTimeTo(this.distributionTime +

EXPECTED_BONUS_TIMES.STAGE_ONE + duration.days(5));

 await this.tokenManager.payBonus(MIN_GAS_NEEDED_BONUS_LOOP);

© 2018 Coinspect 20

 // now the balance for '0xcc' should be the contribution of both

 // 0xaa and 0xbb added and multiplied by the bonus percentage (20%).

 // (100 + 500) * 1.2

 (await this.token.balanceOf('0xcc')).should.bignumber.equal(720);

 });

 });

});

© 2018 Coinspect 21

8. Disclaimer

The present security audit is limited to smart contract code. It does not cover the
technologies and designs related to these smart contracts, nor the frameworks and wallets
that communicate with the contracts, nor the general operational security of the company
whose contracts have been audited. This document should not be read as investment advice
or an offering of tokens.

© 2018 Coinspect 22

